Gene
slc1a5
- ID
- ZDB-GENE-070501-4
- Name
- solute carrier family 1 member 5
- Symbol
- slc1a5 Nomenclature History
- Previous Names
- None
- Type
- protein_coding_gene
- Location
- Chr: 15 Mapping Details/Browsers
- Description
- Predicted to enable L-aspartate transmembrane transporter activity and neutral L-amino acid transmembrane transporter activity. Predicted to be involved in L-aspartate import across plasma membrane. Predicted to act upstream of or within amino acid transport. Predicted to be located in melanosome and membrane. Predicted to be active in plasma membrane. Orthologous to human SLC1A5 (solute carrier family 1 member 5).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Tian et al., 2015
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la027590Tg | Transgenic insertion | Unknown | Unknown | DNA |
1 - 1 of 1
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Dicarboxylate/Amino Acid:Cation Symporter | Sodium:dicarboxylate symporter | Sodium:dicarboxylate symporter, conserved site | Sodium:dicarboxylate symporter superfamily |
---|---|---|---|---|---|---|
UniProtKB:D7RVS2 | InterPro | 539 |
1 - 1 of 1
- Genome Browsers
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
slc1a5-201
(1)
|
Ensembl | 5,783 nt | ||
mRNA |
slc1a5-202
(1)
|
Ensembl | 1,647 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
- Tian, J., He, G., Mai, K., Liu, C. (2015) Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). Fish physiology and biochemistry. 41(3):773-87
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Gesemann, M., Lesslauer, A., Maurer, C.M., Schönthaler, H.B., and Neuhauss, S.C. (2010) Phylogenetic analysis of the vertebrate excitatory/neutral amino acid transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evolutionary Biology. 10:117
- Gesemann, M., Maurer, C.M., and Neuhauss, S.C. (2010) Excitatory amino acid transporters in the zebrafish: Letter to "Expression and functional analysis of Na(+)-dependent glutamate transporters from zebrafish brain" from Rico et al. Brain research bulletin. 83(5):202-206
- Steffen, L.S., Guyon, J.R., Vogel, E.D., Beltre, R., Pusack, T.J., Zhou, Y., Zon, L.I., and Kunkel, L.M. (2007) Zebrafish orthologs of human muscular dystrophy genes. BMC Genomics. 8(1):79
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z., and Peng, J. (2003) 15,000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome research. 13(3):455-466
1 - 7 of 7
Show