Gene
steap4
- ID
- ZDB-GENE-070424-244
- Name
- STEAP family member 4
- Symbol
- steap4 Nomenclature History
- Previous Names
-
- si:dkey-53p21.1
- zgc:112143
- Type
- protein_coding_gene
- Location
- Chr: 16 Mapping Details/Browsers
- Description
- Predicted to enable cupric reductase (NADH) activity and ferric-chelate reductase (NADPH) activity. Predicted to be involved in copper ion import. Predicted to act upstream of or within iron ion transport. Predicted to be located in endosome membrane. Predicted to be active in endosome and plasma membrane. Orthologous to human STEAP4 (STEAP4 metalloreductase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa39102 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Ferric reductase transmembrane component-like domain | NAD(P)-binding domain superfamily | Pyrroline-5-carboxylate reductase, catalytic, N-terminal | STEAP family metalloreductases |
---|---|---|---|---|---|---|
UniProtKB:F1Q9R5 | InterPro | 472 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
steap4-201
(1)
|
Ensembl | 3,949 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-53P21 | ZFIN Curated Data | |
Encodes | cDNA | MGC:112143 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001017734 (1) | 3950 nt | ||
Genomic | GenBank:AL953859 (2) | 203360 nt | ||
Polypeptide | UniProtKB:F1Q9R5 (1) | 472 aa |
- Xu, J., Li, Y., Li, X., Tan, X., Liu, L., Cao, L., Xu, H. (2025) Microglia-Derived IL-6 Promotes Müller Glia Reprogramming and Proliferation in Zebrafish Retina Regeneration. Investigative ophthalmology & visual science. 66:6767
- Xu, H., Cao, L., Chen, Y., Zhou, C., Xu, J., Zhang, Z., Li, X., Liu, L., Lu, J. (2024) Single-cell RNA sequencing reveals the heterogeneity and interactions of immune cells and Müller glia during zebrafish retina regeneration. Neural regeneration research. :
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Benard, E.L., Roobol, S.J., Spaink, H.P., Meijer, A.H. (2014) Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling. Developmental and comparative immunology. 47(2):223-33
- Briolat, V., Jouneau, L., Carvalho, R., Palha, N., Langevin, C., Herbomel, P., Schwartz, O., Spaink, H.P., Levraud, J.P., Boudinot, P. (2014) Contrasted Innate Responses to Two Viruses in Zebrafish: Insights into the Ancestral Repertoire of Vertebrate IFN-Stimulated Genes. Journal of immunology (Baltimore, Md. : 1950). 192:4328-41
- Veneman, W.J., Stockhammer, O.W., de Boer, L., Zaat, S.A., Meijer, A.H., and Spaink, H.P. (2013) A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics. 14(1):255
- Stockhammer, O.W., Rauwerda, H., Wittink, F.R., Breit, T.M., Meijer, A.H., and Spaink, H.P. (2010) Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos. Molecular immunology. 48(1-3):179-190
- Hegedus, Z., Zakrzewska, A., Agoston, V.C., Ordas, A., Rácz, P., Mink, M., Spaink, H.P., and Meijer, A.H. (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Molecular immunology. 46(15):2918-2930
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 10 of 10
Show