Gene
ctsbb
- ID
- ZDB-GENE-070323-1
- Name
- cathepsin Bb
- Symbol
- ctsbb Nomenclature History
- Previous Names
- None
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable cysteine-type endopeptidase activity. Predicted to be involved in proteolysis involved in protein catabolic process. Predicted to act upstream of or within proteolysis and regulation of catalytic activity. Predicted to be active in extracellular space and lysosome. Human ortholog(s) of this gene implicated in diabetes mellitus. Orthologous to human CTSB (cathepsin B).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa43551 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-ctsbb | N/A | Berg et al., 2016 |
MO2-ctsbb | N/A | Berg et al., 2016 |
1 - 2 of 2
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Keratolytic winter erythema | 148370 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Active_site | IPR000169 | Cysteine peptidase, cysteine active site |
Active_site | IPR025660 | Cysteine peptidase, histidine active site |
Active_site | IPR025661 | Cysteine peptidase, asparagine active site |
Domain | IPR000668 | Peptidase C1A, papain C-terminal |
Domain | IPR012599 | Peptidase C1A, propeptide |
1 - 5 of 7 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | Cysteine peptidase, asparagine active site | Cysteine peptidase, cysteine active site | Cysteine peptidase, histidine active site | Papain-like cysteine peptidase superfamily | Peptidase C1A | Peptidase C1A, papain C-terminal | Peptidase C1A, propeptide |
---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M2B7X2 | InterPro | 331 | |||||||
UniProtKB:A4FUN3 | InterPro | 326 | |||||||
UniProtKB:A0AB13ABU9 | InterPro | 326 |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-107C13 | ZFIN Curated Data | |
Encodes | cDNA | MGC:136756 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001110478 (1) | 2091 nt | ||
Genomic | GenBank:CU207296 (1) | 98771 nt | ||
Polypeptide | UniProtKB:A0A8M2B7X2 (1) | 331 aa |
- Gao, Y., Jin, Q., Gao, C., Chen, Y., Sun, Z., Guo, G., Peng, J. (2022) Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells. 11(20):
- Liu, H., Chen, Y., Hu, W., Luo, Y., Zhu, P., You, S., Li, Y., Jiang, Z., Wu, X., Li, X. (2022) Impacts of PFOAC8, GenXC6, and their mixtures on zebrafish developmental toxicity and gene expression provide insight about tumor-related disease. The Science of the total environment. 858(Pt 2):160085
- Wen, J., Mercado, G.P., Volland, A., Doden, H.L., Lickwar, C.R., Crooks, T., Kakiyama, G., Kelly, C., Cocchiaro, J.L., Ridlon, J.M., Rawls, J.F. (2021) Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. Science advances. 7(30)
- Deng, S., Jia, P.P., Zhang, J.H., Junaid, M., Niu, A., Ma, Y.B., Fu, A., Pei, D.S. (2018) Transcriptomic response and perturbation of toxicity pathways in zebrafish larvae after exposure to graphene quantum dots (GQDs). Journal of hazardous materials. 357:146-158
- Klangnurak, W., Fukuyo, T., Rezanujjaman, M.D., Seki, M., Sugano, S., Suzuki, Y., Tokumoto, T. (2018) Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish. PLoS One. 13:e0196544
- Xu, H., Liu, E., Li, Y., Li, X., Ding, C. (2017) Transcriptome Analysis Reveals Increases in Visceral Lipogenesis and Storage and Activation of the Antigen Processing and Presentation Pathway during the Mouth-Opening Stage in Zebrafish Larvae. International Journal of Molecular Sciences. 18(8):1634
- Berg, R.D., Levitte, S., O'Sullivan, M.P., O'Leary, S.M., Cambier, C.J., Cameron, J., Takaki, K.K., Moens, C.B., Tobin, D.M., Keane, J., Ramakrishnan, L. (2016) Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration. Cell. 165:139-152
- Macaulay, I.C., Svensson, V., Labalette, C., Ferreira, L., Hamey, F., Voet, T., Teichmann, S.A., Cvejic, A. (2016) Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells. Cell Reports. 14(4):966-77
- Li, C., Song, L., Tan, F., Su, B., Zhang, D., Zhao, H., Peatman, E. (2015) Identification and mucosal expression analysis of cathepsin B in channel catfish (Ictalurus punctatus) following bacterial challenge. Fish & shellfish immunology. 47(2):751-7
- Li, I.C., Chan, C.T., Lu, Y.F., Wu, Y.T., Chen, Y.C., Li, G.B., Lin, C.Y., and Hwang, S.P. (2011) Zebrafish krüppel-like factor 4a represses intestinal cell proliferation and promotes differentiation of intestinal cell lineages. PLoS One. 6(6):e20974
1 - 10 of 12
Show