Gene
asap2a
- ID
- ZDB-GENE-041210-256
- Name
- ArfGAP with SH3 domain, ankyrin repeat and PH domain 2a
- Symbol
- asap2a Nomenclature History
- Previous Names
-
- ddef2a (1)
- si:dkey-27p7.2
- Type
- protein_coding_gene
- Location
- Chr: 17 Mapping Details/Browsers
- Description
- Predicted to enable GTPase activator activity. Predicted to act upstream of or within positive regulation of GTPase activity. Predicted to be located in Golgi apparatus and membrane. Orthologous to human ASAP2 (ArfGAP with SH3 domain, ankyrin repeat and PH domain 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- No data available
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la027854Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa11846 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa23132 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa39170 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | AH/BAR domain superfamily | Ankyrin repeat | Ankyrin repeat-containing domain superfamily | ArfGAP domain superfamily | ARFGAP/RecO-like zinc finger | Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein | Arf GTPase activating protein | ASAP, PH domain | BAR domain | PH-like domain superfamily | Pleckstrin homology domain | SH3 domain | SH3-like domain superfamily |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M9P084 | InterPro | 1003 | |||||||||||||
UniProtKB:Q5RG20 | InterPro | 991 | |||||||||||||
UniProtKB:A0A8M9PEC9 | InterPro | 994 | |||||||||||||
UniProtKB:A0A8M2B573 | InterPro | 994 | |||||||||||||
UniProtKB:A0A8M9P912 | InterPro | 1000 |
1 - 5 of 7 Show all
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
asap2a-201
(1)
|
Ensembl | 4,258 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-27P7 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001045207 (1) | 4258 nt | ||
Genomic | GenBank:CR381585 (1) | 209698 nt | ||
Polypeptide | UniProtKB:A0A8M9P084 (1) | 1003 aa |
- Postlethwait, J.H., Massaquoi, M.S., Farnsworth, D.R., Yan, Y.L., Guillemin, K., Miller, A.C. (2021) The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Biology Open. 10(3):
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 5 of 5
Show