Gene
csad
- ID
- ZDB-GENE-041114-36
- Name
- cysteine sulfinic acid decarboxylase
- Symbol
- csad Nomenclature History
- Previous Names
-
- zgc:103478
- Type
- protein_coding_gene
- Location
- Chr: 23 Mapping Details/Browsers
- Description
- Enables sulfinoalanine decarboxylase activity. Acts upstream of or within heart development and taurine biosynthetic process. Predicted to be active in cytoplasm. Is expressed in several structures, including brain; digestive system; pronephric duct; solid lens vesicle; and somite border. Orthologous to human CSAD (cysteine sulfinic acid decarboxylase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 8 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:103478 (19 images)
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa9430 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-csad | N/A | Chang et al., 2013 |
MO2-csad | N/A | Chang et al., 2013 |
1 - 2 of 2
Show
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Binding_site | IPR021115 | Pyridoxal-phosphate binding site |
Family | IPR002129 | Pyridoxal phosphate-dependent decarboxylase |
Homologous_superfamily | IPR015421 | Pyridoxal phosphate-dependent transferase, major domain |
Homologous_superfamily | IPR015424 | Pyridoxal phosphate-dependent transferase |
1 - 4 of 4
Domain Details Per Protein
Protein | Additional Resources | Length | Pyridoxal-phosphate binding site | Pyridoxal phosphate-dependent decarboxylase | Pyridoxal phosphate-dependent transferase | Pyridoxal phosphate-dependent transferase, major domain |
---|---|---|---|---|---|---|
UniProtKB:F1QG14 | InterPro | 544 | ||||
UniProtKB:Q5U3I6 | InterPro | 482 | ||||
UniProtKB:A0A8M1N2X8 | InterPro | 500 |
1 - 3 of 3
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(ubb:csad-STOP-FLAG) |
|
| 2 | Tseng et al., 2020 |
1 - 1 of 1
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-383O19 | ZFIN Curated Data | |
Encodes | cDNA | MGC:103478 | ZFIN Curated Data | |
Encodes | cDNA | MGC:191860 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001007348 (1) | 1785 nt | ||
Genomic | GenBank:CU468730 (1) | 63284 nt | ||
Polypeptide | UniProtKB:F1QG14 (1) | 544 aa |
- Ichikawa, S., Abe, R., Fujimoto, H., Higashi, K., Zang, L., Nakayama, H., Matsuoka, I., Shimada, Y. (2023) Paraburkholderia sabiae administration alters zebrafish anxiety-like behavior via gut microbial taurine metabolism. Frontiers in microbiology. 14:10791871079187
- Malatesta, M., Mori, G., Acquotti, D., Campanini, B., Peracchi, A., Antin, P.B., Percudani, R. (2020) Birth of a pathway for sulfur metabolism in early amniote evolution. Nature ecology & evolution. 4:1239-1246
- Tseng, Y.T., Ko, C.L., Chang, C.T., Lee, Y.H., Huang Fu, W.C., Liu, I.H. (2020) Leucine-rich repeat containing 8A contributes to the expansion of brain ventricles in zebrafish embryos. Biology Open. 9(1):
- Yang, M.J., Xu, D., Yang, D.X., Li, L., Peng, X.X., Chen, Z.G., Li, H. (2020) Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence. 11:349-364
- Larkin, M.E.M., Place, A.R. (2017) Running the Stop Sign: Readthrough of a Premature UAG Termination Signal in the Translation of a Zebrafish (Danio rerio) Taurine Biosynthetic Enzyme. Marine drugs. 15(6):162
- Liu, C.L., Watson, A.M., Place, A.R., Jagus, R. (2017) Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium. Marine drugs. 15(6)
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Chang, Y.C., Ding, S.T., Lee, Y.H., Wang, Y.C., Huang, M.F., and Liu, I.H. (2013) Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis. Amino Acids. 44(2):615-629
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show