Gene
crkl
- ID
- ZDB-GENE-040426-2951
- Name
- v-crk avian sarcoma virus CT10 oncogene homolog-like
- Symbol
- crkl Nomenclature History
- Previous Names
-
- wu:fa55g05
- wu:fj60e01
- zgc:63469 (1)
- Type
- protein_coding_gene
- Location
- Chr: 21 Mapping Details/Browsers
- Description
- Predicted to enable receptor tyrosine kinase binding activity and signaling adaptor activity. Acts upstream of or within myoblast fusion; pronephros morphogenesis; and retina layer formation. Predicted to be active in cytoplasm. Is expressed in nervous system; otic vesicle; and pronephros. Human ortholog(s) of this gene implicated in chronic myeloid leukemia. Orthologous to human CRKL (CRK like proto-oncogene, adaptor protein).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:63469 (1 image)
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
uvm2 | Allele with one delins | Exon 1 | Frameshift, Premature Stop | CRISPR |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-crkl | Lopez-Rivera et al., 2017 | |
CRISPR2-crkl | Du et al., 2020 | |
CRISPR3-crkl | Du et al., 2020 | |
CRISPR4-crkl | Du et al., 2020 | |
CRISPR5-crkl | Du et al., 2020 | |
CRISPR6-crkl | Stergas et al., 2021 | |
MO1-crkl | N/A | (2) |
MO2-crkl | N/A | Moore et al., 2007 |
1 - 8 of 8
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | CRK, N-terminal SH3 domain | SH2 domain | SH2 domain superfamily | SH3 domain | SH3-like domain superfamily | Tyrosine-phosphorylated adapter molecule |
---|---|---|---|---|---|---|---|---|
UniProtKB:Q6PH06 | InterPro | 305 |
1 - 1 of 1
- Genome Browsers
Interactions and Pathways
No data available
Plasmids
No data available
- Campbell, P.D., Lee, I., Thyme, S., Granato, M. (2023) Mitochondrial proteins encoded by the 22q11.2 neurodevelopmental locus regulate neural stem and progenitor cell proliferation. Molecular psychiatry. 28(9):3769-3781
- Stergas, H.R., Dillon-Martin, M., Dumas, C.M., Hansen, N.A., Carasi-Schwartz, F.J., D'Amico, A.R., Finnegan, K.M., Juch, U., Kane, K.R., Kaplan, I.E., Masengarb, M.L., Melero, M.E., Meyer, L.E., Sacher, C.R., Scriven, E.A., Ebert, A.M., Ballif, B.A. (2023) CRK and NCK adaptors may functionally overlap in zebrafish neurodevelopment, as indicated by common binding partners and overlapping expression patterns. FEBS letters. 598(3):302-320
- Stergas, H.R., Kalbag, Z., St Clair, R.M., Talbot, J.C., Ballif, B.A., Ebert, A.M. (2021) Crk adaptor proteins are necessary for the development of the zebrafish retina. Developmental Dynamics : an official publication of the American Association of Anatomists. 251(2):362-376
- Du, J., Meng, L., Pang, L., Jin, B., Duan, N., Huang, C., Huang, H., Li, H. (2020) Crk1/2 and CrkL play critical roles in maintaining podocyte morphology and function. Experimental cell research. 394(1):112135
- Lopez-Rivera, E., Liu, Y.P., Verbitsky, M., Anderson, B.R., Capone, V.P., Otto, E.A., Yan, Z., Mitrotti, A., Martino, J., Steers, N.J., Fasel, D.A., Vukojevic, K., Deng, R., Racedo, S.E., Liu, Q., Werth, M., Westland, R., Vivante, A., Makar, G.S., Bodria, M., Sampson, M.G., Gillies, C.E., Vega-Warner, V., Maiorana, M., Petrey, D.S., Honig, B., Lozanovski, V.J., Salomon, R., Heidet, L., Carpentier, W., Gaillard, D., Carrea, A., Gesualdo, L., Cusi, D., Izzi, C., Scolari, F., van Wijk, J.A., Arapovic, A., Saraga-Babic, M., Saraga, M., Kunac, N., Samii, A., McDonald-McGinn, D.M., Crowley, T.B., Zackai, E.H., Drozdz, D., Miklaszewska, M., Tkaczyk, M., Sikora, P., Szczepanska, M., Mizerska-Wasiak, M., Krzemien, G., Szmigielska, A., Zaniew, M., Darlow, J.M., Puri, P., Barton, D., Casolari, E., Furth, S.L., Warady, B.A., Gucev, Z., Hakonarson, H., Flogelova, H., Tasic, V., Latos-Bielenska, A., Materna-Kiryluk, A., Allegri, L., Wong, C.S., Drummond, I.A., D'Agati, V., Imamoto, A., Barasch, J.M., Hildebrandt, F., Kiryluk, K., Lifton, R.P., Morrow, B.E., Jeanpierre, C., Papaioannou, V.E., Ghiggeri, G.M., Gharavi, A.G., Katsanis, N., Sanna-Cherchi, S. (2017) Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. The New England Journal of Medicine. 376(8):742-754
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Guna, A., Butcher, N.J., Bassett, A.S. (2015) Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. Journal of neurodevelopmental disorders. 7:18
- Anelli, V., Santoriello, C., Distel, M., Köster, R.W., Ciccarelli, F.D., and Mione, M. (2009) Global repression of cancer gene expression in a zebrafish model of melanoma is linked to epigenetic regulation. Zebrafish. 6(4):417-424
- Shkumatava, A., Stark, A., Sive, H., and Bartel, D.P. (2009) Coherent but overlapping expression of microRNAs and their targets during vertebrate development. Genes & Development. 23(4):466-481
- Moore, C.A., Parkin, C.A., Bidet, Y., and Ingham, P.W. (2007) A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion. Development (Cambridge, England). 134(17):3145-3153
1 - 10 of 12
Show