Gene
gyg1a
- ID
- ZDB-GENE-040426-2910
- Name
- glycogenin 1a
- Symbol
- gyg1a Nomenclature History
- Previous Names
-
- gyg1
- gyg (1)
- fc13d04
- fi23f07
- wu:fc13d04
- wu:fi23f07
- zgc:55385
- zgc:85619
- Type
- protein_coding_gene
- Location
- Chr: 2 Mapping Details/Browsers
- Description
- Predicted to enable glycosyltransferase activity. Predicted to be involved in glycogen biosynthetic process. Predicted to be active in cytoplasm. Is expressed in several structures, including female organism; immature eye; lens; liver; and myotome. Human ortholog(s) of this gene implicated in glycogen storage disease and glycogen storage disease XV. Orthologous to human GYG1 (glycogenin 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 8 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:55385 (7 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
hu3302 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
glycogen storage disease XV | Alliance | ?Glycogen storage disease XV | 613507 |
Polyglucosan body myopathy 2 | 616199 |
1 - 2 of 2
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Glycosyl transferase, family 8 | GNT1/Glycosyltransferase 8 | Nucleotide-diphospho-sugar transferases |
---|---|---|---|---|---|
UniProtKB:Q803Q1 | InterPro | 329 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-4M11 | ZFIN Curated Data | |
Encodes | EST | fc13d04 | ||
Encodes | EST | fi23f07 | ||
Encodes | cDNA | MGC:55385 | ZFIN Curated Data | |
Encodes | cDNA | MGC:85619 | ZFIN Curated Data | |
Encodes | cDNA | MGC:114010 | ZFIN Curated Data | |
Encodes | cDNA | MGC:191535 | ZFIN Curated Data | |
Is Hybridized by | EST | fc33f07 |
1 - 8 of 8
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_213510 (1) | 2601 nt | ||
Genomic | GenBank:CR788256 (1) | 52648 nt | ||
Polypeptide | UniProtKB:Q803Q1 (1) | 329 aa |
- King, A.C., Gut, M., Zenker, A.K. (2020) Shedding new light on early sex determination in zebrafish. Archives of toxicology. 94(12):4143-4158
- Newman, M., Hin, N., Pederson, S., Lardelli, M. (2019) Brain transcriptome analysis of a familial Alzheimer's disease-like mutation in the zebrafish presenilin 1 gene implies effects on energy production. Molecular brain. 12:43
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Chatzopoulou, A., Roy, U., Meijer, A.H., Alia, A., Spaink, H.P., Schaaf, M.J. (2015) Transcriptional and Metabolic Effects of Glucocorticoid Receptor α and β Signaling in Zebrafish. Endocrinology. 156(5):1757-69
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Heyn, P., Kircher, M., Dahl, A., Kelso, J., Tomancak, P., Kalinka, A.T., and Neugebauer, K.M. (2014) The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Reports. 6(2):285-292
- Krens, S.F., Corredor-Adamez, M., He, S., Snaar-Jagalska, B.E., and Spaink, H.P. (2008) ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics. 9:196
- Ferg, M., Sanges, R., Gehrig, J., Kiss, J., Bauer, M., Lovas, A., Szabo, M., Yang, L., Straehle, U., Pankratz, M.J., Olasz, F., Stupka, E., and Müller, F. (2007) The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish. The EMBO journal. 26(17):3945-3956
- Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
1 - 10 of 11
Show