Gene
rad51b
- ID
- ZDB-GENE-040426-2750
- Name
- RAD51 paralog B
- Symbol
- rad51b Nomenclature History
- Previous Names
-
- rad51l1
- wu:fd07f04
- zgc:56581
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable ATP-dependent activity, acting on DNA; double-stranded DNA binding activity; and single-stranded DNA binding activity. Predicted to contribute to four-way junction DNA binding activity. Predicted to be involved in double-strand break repair via homologous recombination. Predicted to act upstream of or within DNA repair. Predicted to be part of Rad51B-Rad51C-Rad51D-XRCC2 complex. Predicted to be active in replication fork. Is expressed in head. Orthologous to human RAD51B (RAD51 paralog B).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 3 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:56581 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la013962Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa23643 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa31040 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa43390 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa43391 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 5 of 5
Show
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR003593 | AAA+ ATPase domain |
Domain | IPR013632 | DNA recombination and repair protein Rad51-like, C-terminal |
Domain | IPR020588 | DNA recombination and repair protein RecA-like, ATP-binding domain |
Family | IPR016467 | DNA recombination and repair protein, RecA-like |
Family | IPR030548 | DNA repair protein RAD51 homologue 2 |
1 - 5 of 6 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | AAA+ ATPase domain | DNA recombination and repair protein Rad51-like, C-terminal | DNA recombination and repair protein, RecA-like | DNA recombination and repair protein RecA-like, ATP-binding domain | DNA repair protein RAD51 homologue 2 | P-loop containing nucleoside triphosphate hydrolase |
---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M6YU53 | InterPro | 366 | ||||||
UniProtKB:A0A8M6Z2M3 | InterPro | 311 | ||||||
UniProtKB:Q7ZTX4 | InterPro | 373 |
1 - 3 of 3
- Genome Browsers
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
rad51b-201
(1)
|
Ensembl | 3,220 nt | ||
mRNA |
rad51b-202
(1)
|
Ensembl | 1,042 nt |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEYP-88E3 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-402B18 | ZFIN Curated Data | |
Encodes | EST | fd07f04 | ZFIN Curated Data | |
Encodes | cDNA | MGC:56581 | ZFIN Curated Data |
1 - 4 of 4
Show
- Pan, Y.J., Tong, S.K., Hsu, C.W., Weng, J.H., Chung, B.C. (2022) Zebrafish Establish Female Germ Cell Identity by Advancing Cell Proliferation and Meiosis. Frontiers in cell and developmental biology. 10:866267
- Li, J., Liu, F., Lv, Y., Sun, K., Zhao, Y., Reilly, J., Zhang, Y., Tu, J., Yu, S., Liu, X., Qin, Y., Huang, Y., Gao, P., Jia, D., Chen, X., Han, Y., Shu, X., Luo, D., Tang, Z., Liu, M. (2021) Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic acids research. 49(4):2027-2043
- Xie, H., Kang, Y., Wang, S., Zheng, P., Chen, Z., Roy, S., Zhao, C. (2020) E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genetics. 16:e1008655
- Honjo, Y., Ichinohe, T. (2019) Cellular responses to ionizing radiation change quickly over time during early development in zebrafish. Cell biology international. 43(5):516-527
- Zheng, M., Lu, J., Zhao, D. (2018) Toxicity and Transcriptome Sequencing (RNA-seq) Analyses of Adult Zebrafish in Response to Exposure Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles. Scientific Reports. 8:8083
- Botthof, J.G., Bielczyk-Maczyńska, E., Ferreira, L., Cvejic, A. (2017) Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish.. Proceedings of the National Academy of Sciences of the United States of America. 114(22):E4452-E4461
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 10 of 10
Show