Gene
dldh
- ID
- ZDB-GENE-040120-4
- Name
- dihydrolipoamide dehydrogenase
- Symbol
- dldh Nomenclature History
- Previous Names
-
- fb24b05
- wu:fb24b05 (1)
- Type
- protein_coding_gene
- Location
- Chr: 25 Mapping Details/Browsers
- Description
- Predicted to enable dihydrolipoyl dehydrogenase (NADH) activity and flavin adenine dinucleotide binding activity. Acts upstream of or within heart contraction. Predicted to be located in acrosomal vesicle and motile cilium. Predicted to be part of oxoglutarate dehydrogenase complex. Predicted to be active in mitochondrion. Is expressed in several structures, including adaxial cell; digestive system; midbrain; musculature system; and retina. Human ortholog(s) of this gene implicated in maple syrup urine disease. Orthologous to human DLD (dihydrolipoamide dehydrogenase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 7 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7151702 (10 images)
Wild Type Expression Summary
- All Phenotype Data
- 10 figures from 2 publications
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
cri3 | Allele with one deletion | Exon 11 | Unknown | CRISPR |
1 - 1 of 1
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-dldh | Lavorato et al., 2024 | |
MO1-dldh | N/A | Keßler et al., 2015 |
1 - 2 of 2
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
maple syrup urine disease | Alliance | Dihydrolipoamide dehydrogenase deficiency | 246900 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Active_site | IPR012999 | Pyridine nucleotide-disulphide oxidoreductase, class I, active site |
Domain | IPR004099 | Pyridine nucleotide-disulphide oxidoreductase, dimerisation domain |
Domain | IPR023753 | FAD/NAD(P)-binding domain |
Family | IPR001100 | Pyridine nucleotide-disulphide oxidoreductase, class I |
Family | IPR006258 | Dihydrolipoamide dehydrogenase |
1 - 5 of 8 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | Class-I pyridine nucleotide-disulfide oxidoreductase | Dihydrolipoamide dehydrogenase | FAD/NAD-linked reductase, dimerisation domain superfamily | FAD/NAD(P)-binding domain | FAD/NAD(P)-binding domain superfamily | Pyridine nucleotide-disulphide oxidoreductase, class I | Pyridine nucleotide-disulphide oxidoreductase, class I, active site | Pyridine nucleotide-disulphide oxidoreductase, dimerisation domain |
---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q803L1 | InterPro | 507 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-42P14 | ZFIN Curated Data | |
Encodes | EST | fb24b05 | ||
Encodes | EST | IMAGE:7151702 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:55583 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_201506 (1) | 1805 nt | ||
Genomic | GenBank:CR376804 (1) | 117107 nt | ||
Polypeptide | UniProtKB:Q803L1 (1) | 507 aa |
Species | Symbol | Chromosome | Accession # | Evidence |
---|---|---|---|---|
Human | DLD | 7 | Amino acid sequence comparison (2) |
- Lavorato, M., Iadarola, D., Remes, C., Kaur, P., Broxton, C., Mathew, N.D., Xiao, R., Seiler, C., Nakamaru-Ogiso, E., Anderson, V.E., Falk, M.J. (2024) dldhcri3 zebrafish exhibited altered mitochondrial ultrastructure, morphology and dysfunction partially rescued by probucol or thiamine. JCI insight. 9(18):
- Li, L., Chen, M., Liu, W., Tai, P., Liu, X., Liu, J.X. (2022) Zebrafish cox17 modulates primitive erythropoiesis via regulation of mitochondrial metabolism to facilitate hypoxia tolerance. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 36:e22596
- Lee, H., Gao, Y., Ko, E., Lee, J., Lee, H.K., Lee, S., Choi, M., Shin, S., Park, Y.H., Moon, H.B., Uppal, K., Kim, K.T. (2021) Nonmonotonic response of type 2 diabetes by low concentration organochlorine pesticide mixture: Findings from multi-omics in zebrafish. Journal of hazardous materials. 416:125956
- Saddala, M.S., Lennikov, A., Bouras, A., Huang, H. (2020) RNA-Seq reveals differential expression profiles and functional annotation of genes involved in retinal degeneration in Pde6c mutant Danio rerio. BMC Genomics. 21:132
- Ayobahan, S.U., Eilebrecht, E., Kotthoff, M., Baumann, L., Eilebrecht, S., Teigeler, M., Hollert, H., Kalkhof, S., Schäfers, C. (2019) A combined FSTRA-shotgun proteomics approach to identify molecular changes in zebrafish upon chemical exposure. Scientific Reports. 9:6599
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Keßler, M., Berger, I.M., Just, S., Rottbauer, W. (2015) Loss of dihydrolipoyl succinyltransferase (DLST) leads to reduced resting heart rate in the zebrafish. Basic Research in Cardiology. 110:468
- Singh, S.K., Sundaram, C.S., Shanbhag, S., and Idris, M.M. (2010) Proteomic profile of zebrafish brain based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization MS/MS analysis. Zebrafish. 7(2):169-177
- Sato, Y., Hashiguchi, Y., and Nishida, M. (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evolutionary Biology. 9:127
1 - 10 of 12
Show