Gene
rab32a
- ID
- ZDB-GENE-031006-10
- Name
- RAB32a, member RAS oncogene family
- Symbol
- rab32a Nomenclature History
- Previous Names
-
- rab32
- cb914 (1)
- hm:zehn1770
- zgc:110481
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to enable GTPase activity. Acts upstream of or within notochord cell vacuolation. Predicted to be located in cytoplasm and membrane. Predicted to be active in melanosome; mitochondrion; and trans-Golgi network. Is expressed in several structures, including Kupffer's vesicle; axial mesoderm; neural crest; retinal pigmented epithelium; and shield. Orthologous to human RAB32 (RAB32, member RAS oncogene family).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 8 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- cb914 (12 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la021554Tg | Transgenic insertion | Unknown | Unknown | DNA |
1 - 1 of 1
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
{Parkinson disease 26, autosomal dominant, susceptibility to} | 620923 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | P-loop containing nucleoside triphosphate hydrolase | Ras-related protein Rab29/Rab38/Rab32 | Small GTPase | Small GTP-binding domain |
---|---|---|---|---|---|---|
UniProtKB:Q7ZW88 | InterPro | 213 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
rab32a-201
(1)
|
Ensembl | 1,784 nt | ||
mRNA |
rab32a-203
(1)
|
Ensembl | 1,049 nt | ||
ncRNA |
rab32a-003
(1)
|
Ensembl | 457 nt | ||
ncRNA |
rab32a-004
(1)
|
Ensembl | 847 nt |
1 - 4 of 4
Interactions and Pathways
No data available
Plasmids
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(4xUAS:EGFP-rab32a,myl7:EGFP) |
|
| 1 | (4) | |
Tg(QUAS:EGFP-rab32a) |
|
| 1 | Park et al., 2019 | |
Tg(rcn3:GFP-rab32a) |
|
| 1 | (3) |
1 - 3 of 3
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-139G20 | ZFIN Curated Data | |
Contains | SNP | rs3729040 | ZFIN Curated Data | |
Encodes | EST | cb914 | Thisse et al., 2001 | |
Encodes | EST | zehn1770 | ZFIN Curated Data | |
Encodes | cDNA | MGC:56687 | ZFIN Curated Data | |
Encodes | cDNA | MGC:76982 | ZFIN Curated Data | |
Encodes | cDNA | MGC:110481 | ZFIN Curated Data | |
Encodes | cDNA | MGC:191482 | ZFIN Curated Data |
1 - 8 of 8
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_201332 (1) | 1633 nt | ||
Genomic | GenBank:BX649393 (2) | 45444 nt | ||
Polypeptide | UniProtKB:Q7ZW88 (1) | 213 aa |
- Bagwell, J., Norman, J., Ellis, K.L., Peskin, B., Hwang, J., Ge, X., Nguyen, S., McMenamin, S.K., Stainier, D.Y., Bagnat, M. (2020) Notochord vacuoles absorb compressive bone growth during zebrafish spine formation. eLIFE. 9:
- Park, J., Levic, D.S., Sumigray, K.D., Bagwell, J., Eroglu, O., Block, C.L., Eroglu, C., Barry, R., Lickwar, C.R., Rawls, J.F., Watts, S.A., Lechler, T., Bagnat, M. (2019) Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Developmental Cell. 51(1):7-20.e6
- Norman, J., Sorrell, E.L., Hu, Y., Siripurapu, V., Garcia, J., Bagwell, J., Charbonneau, P., Lubkin, S.R., Bagnat, M. (2018) Tissue self-organization underlies morphogenesis of the notochord. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 373(1759):
- Garcia, J., Bagwell, J., Njaine, B., Norman, J., Levic, D.S., Wopat, S., Miller, S.E., Liu, X., Locasale, J.W., Stainier, D.Y.R., Bagnat, M. (2017) Sheath Cell Invasion and Trans-differentiation Repair Mechanical Damage Caused by Loss of Caveolae in the Zebrafish Notochord. Current biology : CB. 27(13):1982-1989.e3
- Hall, T.E., Martel, N., Lo, H.P., Xiong, Z., Parton, R.G. (2017) A plasmid library of full-length zebrafish rab proteins for in vivo cell biology.. Cellular logistics. 7:e1301151
- Seberg, H.E., Van Otterloo, E., Loftus, S.K., Liu, H., Bonde, G., Sompallae, R., Gildea, D.E., Santana, J.F., Manak, J.R., Pavan, W.J., Williams, T., Cornell, R.A. (2017) TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genetics. 13:e1006636
- Coppola, U., Annona, G., D'Aniello, S., Ristoratore, F. (2016) Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective. BMC Evolutionary Biology. 16:26
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Ellis, K., Bagwell, J., and Bagnat, M. (2013) Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. The Journal of cell biology. 200(5):667-679
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
1 - 10 of 16
Show