PUBLICATION

Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish

Authors
Shi, B., Heng, J., Zhou, J.Y., Yang, Y., Zhang, W.Y., Koziol, M.J., Zhao, Y.L., Li, P., Liu, F., Yang, Y.G.
ID
ZDB-PUB-220607-13
Date
2022
Source
Cell Research   32(8): 715-728 (Journal)
Registered Authors
Liu, Feng
Keywords
none
Datasets
GEO:GSE169169, GEO:GSE169161
MeSH Terms
  • Animals
  • DNA Helicases
  • Embryonic Development/genetics
  • Gene Expression Regulation, Developmental
  • RNA, Messenger, Stored/genetics
  • Zebrafish*/genetics
  • Zebrafish Proteins/genetics
  • Zebrafish Proteins/metabolism
  • Zygote*/metabolism
PubMed
35661831 Full text @ Cell Res.
Abstract
Vertebrate embryogenesis involves a conserved and fundamental process, called the maternal-to-zygotic transition (MZT), which marks the switch from a maternal factors-dominated state to a zygotic factors-driven state. Yet the precise mechanism underlying MZT remains largely unknown. Here we report that the RNA helicase Ddx3xb in zebrafish undergoes liquid-liquid phase separation (LLPS) via its N-terminal intrinsically disordered region (IDR), and an increase in ATP content promotes the condensation of Ddx3xb during MZT. Mutant form of Ddx3xb losing LLPS ability fails to rescue the developmental defect of Ddx3xb-deficient embryos. Interestingly, the IDR of either FUS or hnRNPA1 can functionally replace the N-terminal IDR in Ddx3xb. Phase separation of Ddx3xb facilitates the unwinding of 5' UTR structures of maternal mRNAs to enhance their translation. Our study reveals an unprecedent mechanism whereby the Ddx3xb phase separation regulates MZT by promoting maternal mRNA translation.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping