PUBLICATION

The role of pou2, spiel-ohne-grenzen (spg) in brain and endoderm development of the zebrafish, Danio rerio

Authors
Reim, G.
ID
ZDB-PUB-090603-65
Date
2003
Source
Ph.D. Thesis : (Thesis)
Registered Authors
Reim, Gerlinde
Keywords
Endoderm, Competence, Maternal-zygotic function, Midbrain-hindbrain boundary, Pattern formation, WW 2620
MeSH Terms
none
PubMed
none
Abstract
The central theme of development, how cells are organized into functional structures and assembled into whole organisms, is addressed by developmental biology. One important feature of embryonic development is pattern formation, which is the generation of a particular arrangement of cells in three-dimensional space at a given point of time. Central to this work is the model system of the zebrafish, Danio rerio. The aim of the first part of this study was to try to understand how a distinct part of the embryonic brain called midbrain-hindbrain boundary (MHB), a region that acts as an organizer for the adjacent brain regions, is established in vertebrates. spiel-ohne-grenzen (spg) is one mutant which interferes with MHB development. Here, I addressed the role of pou2 in brain development by molecular, phenotypical and functional analysis. By genetic complementation and mapping I could elucidate the molecular nature of this mutant and found that the pou2 gene encoding the POU domain transcription factor is affected in spg mutant embryos. By chromosomal syntenic conservation, phylogenetic sequence comparison, and expression and functional data I imply that pou2 is the orthologue of the mammalian Oct4 (Pou5F1) gene. I find by detailed expression and transplantation analysis that pou2 is cell autonomously required within the neuroectoderm to activate genes of the MHB and hindbrain primordium, like pax2.1, wnt1, gbx2 or krox20. By gain-of-function experiments I demonstrate that pou2 synergizes with Fgf8 signaling in order to activate particularly the hindbrain primordium. Since pou2 is already provided to the embryo by the mother, I generated embryos which lack maternal and zygotic pou2 function (MZspg) to reveal a possible earlier than neuroectodermal role of pou2. In the second part of this work I demonstrate that pou2 is a key factor controlling endoderm differentiation. By expression and gain-of-function analysis I suggest a cell autonomous function for Pou2 in the fir
Errata / Notes
Dissertation, Dresden Techn. Univ.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping