Gene
atg4b
- ID
- ZDB-GENE-040917-3
- Name
- autophagy related 4B, cysteine peptidase
- Symbol
- atg4b Nomenclature History
- Previous Names
-
- apg4b (1)
- Type
- protein_coding_gene
- Location
- Chr: 6 Mapping Details/Browsers
- Description
- Predicted to enable cysteine-type endopeptidase activity and protein-phosphatidylethanolamide deconjugating activity. Predicted to be involved in macroautophagy; otolith mineralization completed early in development; and protein processing. Predicted to act upstream of or within protein transport and proteolysis. Predicted to be located in several cellular components, including autophagosome; endoplasmic reticulum; and mitochondrion. Predicted to be active in cytoplasm. Is expressed in brain; liver; and muscle. Orthologous to human ATG4B (autophagy related 4B cysteine peptidase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Meng et al., 2017
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Cysteine protease ATG4, F-type LIR motif | Papain-like cysteine peptidase superfamily | Peptidase C54 | Peptidase C54, catalytic domain |
---|---|---|---|---|---|---|
UniProtKB:A4QN52 | InterPro | 394 | ||||
UniProtKB:A0A8M2BD94 | InterPro | 424 | ||||
UniProtKB:Q6DG88 | InterPro | 394 | ||||
UniProtKB:A0A8M6YZJ8 | InterPro | 354 |
1 - 4 of 4
Interactions and Pathways
No data available
Plasmids
No data available
Construct | Regulatory Region | Coding Sequence | Species | Tg Lines | Citations |
---|---|---|---|---|---|
Tg(UAS:FLAG-atg4b_C74A,myl7:EGFP) |
| 1 | Zebrafish Nomenclature Committee |
1 - 1 of 1
Show
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-107H14 | ZFIN Curated Data | |
Encodes | cDNA | MGC:162096 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001089352 (1) | 1799 nt | ||
Genomic | GenBank:CU467043 (1) | 135926 nt | ||
Polypeptide | UniProtKB:A0A8M2BD94 (1) | 424 aa |
- Hsu, T.C., Chiang, C.H., Liu, I.H., Wang, C.Y., Chen, C.Y. (2024) Long-Term Yo-Yo Dieting Exaggerates Liver Steatosis and Lesions but Preserves Muscle Performance in Male Zebrafish. International Journal of Molecular Sciences. 25(23):
- Bragato, C., Carra, S., Blasevich, F., Salerno, F., Brix, A., Bassi, A., Beltrame, M., Cotelli, F., Maggi, L., Mantegazza, R., Mora, M. (2020) Glycogen storage in a zebrafish Pompe disease model is reduced by 3-BrPA treatment. Biochimica et biophysica acta. Molecular basis of disease. 1866(5):165662
- Fan, X., Hou, T., Guan, Y., Li, X., Zhang, S., Wang, Z. (2020) Genomic responses of DNA methylation and transcript profiles in zebrafish cells upon nutrient deprivation stress. The Science of the total environment. 722:137980
- Biga, P.R., Latimer, M.N., Froehlich, J.M., Gabillard, J.C., Seiliez, I. (2017) Distribution of H3K27me3, H3K9me3, and H3K4me3 along autophagy-related genes highly expressed in starved zebrafish myotubes. Biology Open. 6(11):1720-1725
- Meng, X.H., Chen, B., Zhang, J.P. (2017) Intracellular Insulin and Impaired Autophagy in a Zebrafish model and a Cell Model of Type 2 diabetes. International journal of biological sciences. 13:985-995
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Sapp, V., Gaffney, L., EauClaire, S.F., Matthews, R.P. (2014) Fructose leads to hepatic steatosis in zebrafish that is reversed by mTOR inhibition. Hepatology (Baltimore, Md.). 60(5):1581-92
- Seiliez, I., Médale, F., Aguirre, P., Larquier, M., Lanneretonne, L., Alami-Durante, H., Panserat, S., and Skiba-Cassy, S. (2013) Postprandial regulation of growth- and metabolism-related factors in zebrafish. Zebrafish. 10(2):237-248
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 9 of 9
Show