PUBLICATION

In Vitro, In Vivo, and In Silico Analysis of Pyraclostrobin and Cyprodinil and Their Mixture Reveal New Targets and Signaling Mechanisms

Authors
Kim, Y., Bereketoglu, C., Sercinoglu, O., Pradhan, A.
ID
ZDB-PUB-240229-5
Date
2024
Source
Chemical Research in Toxicology   37(3): 497-512 (Journal)
Registered Authors
Pradhan, Ajay
Keywords
none
MeSH Terms
  • Animals
  • Ecosystem*
  • Humans
  • Molecular Docking Simulation
  • Pyrimidines*
  • Strobilurins*
  • Zebrafish*/metabolism
PubMed
38419406 Full text @ Chem. Res. Toxicol.
Abstract
Pyraclostrobin and cyprodinil are broad-spectrum fungicides that are used in crops to control diseases. However, they are excessively used and, as a result, end up in the environment and threaten human health and ecosystems. Hence, knowledge of their mechanisms of action is critical to revealing their environmental fate and negative effects and regulating their use. In the present study, we conducted a comprehensive study to show the adverse effects of pyraclostrobin, cyprodinil, and their mixture using zebrafish larvae and different cell lines. Several end points were investigated, including mortality, development, gene expression, reporter assays, and molecular docking simulations. We found that both compounds and their mixture caused developmental delays and mortality in zebrafish, with a higher effect displayed by pyraclostrobin. Both compounds altered the expression of genes involved in several signaling pathways, including oxidative stress and mitochondrial function, lipid and drug metabolisms, the cell cycle, DNA damage, apoptosis, and inflammation. A noteworthy result of this study is that cyprodinil and the mixture group acted as NFκB activators, while pyraclostrobin demonstrated antagonist activity. The AHR activity was also upregulated by cyprodinil and the mixture group; however, pyraclostrobin did not show any effect. For the first time, we also demonstrated that pyraclostrobin had androgen receptor antagonist activity.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping